Graph Theory: Search

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Graph Traversal

* Visiting nodes in a graph (graph traversal)
* trickier than tree because cycles -> infinite loop

* Jraversing a graph similar to finding a spanning
free

* add flag to each vertex to show if it has been
visited yet

Depth First Search (DFS)

e mark all vertices as not visited

* for all vertices in graph, if vertex v has not been visited then use
recursive function DFS (v)

e DS (v)
e Mark vertex v as visited
e for all vertices connected to v

e if v has not been visited

« DFS(x)

1) mark all vertices as 0,
| choose vertex A

ol A B o

& e

e

0

2)DFS(A) -markas 1,

choose from {F, E, C}

1 Blo

\

ol F C o

3) F notvisited - DFS(F)-mark as 1
NO unvisited connections - return

N B o

e

2l

0

4) back at A
choose from {E, C}

1 B o

\

1| F C o

5)DFS(E) -markas 1, 7)DFS(C)-mark as 1

choose from {B, C} return
1A B |o A B |
w L/ el 7l
E
1 1
6) DFS(B) -markas 1, 8) back at B
choose C - all visited - return
N 1 1A 1
w /e 7 /el

9) back at E

- all visited - return

A

\

1

B

\

C

10) back at A
- all visited - return
recursion done

1

B

\

traversal sequence:
A FEB,C

Breadth First Search (BFS)

mark all vertices as not visited
create an empty queue Q of vertices

for all vertices in graph, if vertex v has not been visited then use iterative function
BES(v) // "hello! i am not recursive"

BES(v)
* Mark vertex v as visited
« addvitoQ
» while Q is not empty
e remove front vertex, X, from Q
e for all vertices, i, adjacent to x,

e if vertex i has not been visited then mark as visited and add it to Q

Queue (ADT)

* join() leave() front() 1s empty()
e queue is first-in first-out (FIFO) data type
e (stack is LIFO)

 NB gqueue analogy is people joining a line. stack is a mechanical dish stacker
(like in a buffet) push () pop () etc.

e using ‘circular’ array would be okay - keep wrap-around start and end indices - tricky

* a linked list might be easier to manage

uy
>
S

- starts empty
\ A visit A, add to Q
Clo A - leave Q
o| E — A FE,C visit adjacents, add to Q
F EC leave Q
F E, C no unvisited adjacent
A B |o E C leave Q
><\ E C,B visit adjacent, add to Q
\ C 1 C B leave Q
P all nodes visited - halt
i E (if vertices in graph still unvisited - repeat for each)
A B o 1A B |1
\ traversal
Cit +1|F sequence:

A FE C B

BFS Recap

BFS is very commonly used to solve lots of problems
e web-crawling / Internet / Wikipedia

e social network - contacts: “people you may know”
BFS works on directed and undirected graphs
Requires a queue

IS not recursive

\

queue

front end

let’s start at A -
seqguence visited

\ \

\

queue

E

A

0

front end
e mark ‘A visited

. enqueue ‘A sequence visited

A

_— queue

E

A

0

front end

e gueue Is not empty so:
 dequeue ‘A
‘A’ ls current vertex A
e unvisited neighbours
(the frontier) is in grey

seqguence visited

_— queue

E

FEC

1

front end

e mark each of these
visited

 and add each to queue AFEC

seqguence visited

DAL

\

queue

E

FEC

1

front end

e gueue Is not empty so:
 dequeue 'F
' Is current vertex AFEC
* NO unvisited neighbours

seqguence visited

queue

EC

1

front end

e gueue Is not empty so:
 dequeue 'E’
 'E’Is current vertex AFEC
e unvisited neighbour

N grey

seqguence visited

queue

CB

1

front end
e mark ‘B’ visited

. enqueue B sequence visited

AFECRB

o\

queue

E

G B

1

front end

e gueue Is not empty so:
 dequeue C’
e ‘C’is current vertex AFECB
* NO unvisited vertices

seqguence visited

o\

/

E

1

e gueue Is not empty so:
e dequeue B’
‘B’ Is current vertex

qu

NO unvisited vertices
eue Is empty

nalt

queue

B

front

seqguence visited
AFECRB

enad

BFS vs DFS

easiest to compare difference on a tree

e Anton: draw helpful diagram here to compare them

visit sequence differs

are you more likely to find your results earlier in a BFS or DFS
sequence”?

implementation may affect sequence - e.g. order that all adjacent
nodes are visited in BFS

recursive function might need rewrite for large graphs

- Q. why?

Depth-First Search 1 ; Breadth-First Search

[branch] recursion frontiers first

/ \ requires queue
2 2 5 3

ABDECFG ABCDEFG

Spanning Trees

* A spanning tree of graph G consists of
e |S a sub-graph - simplifies the graph for traversal
o all vertices in G
e only some of the edges
e should be representable as a tree

« Edges are chosen so that new graph is still connected but is acyclic

* A graph can contain many spanning trees

e (). can a graph that is not connected contain a ST?

Spanning Trees

aph G IS

E

A

T2 IS a spanning tree: %

2

T11s a spanning tree:

N

3
total cost of T1
w =8+ 12+ 10 + 20
=50
C
///55/ cost of T2
= 35

Minimum Cost Spanning
Tree (MCST)

* A spanning tree with the lowest length is a MCST
* Different algorithms for finding a MCST

* Kruskal's Algorithm

* Prim’'s Algorithm

* Boruvka's Algorithm

e mixtures

Kruskal's Algorithm

Joseph Kruskal, 1956

This is one method for finding the MCST

Greedy algorithm paradigm (short-sighted best choices)
* solve in stages - make optimal local choice for each stage
e hope this results close to a global optimum

Start with empty spanning tree

Add next lowest weighted edge to spanning tree, as long as no cycles are
formed

Repeat previous step until all edges have been considered

E
A2 B
A——B
F .

could also have
chosen (B,E)

choose next
lowest weight

cycle detected!
can not add (B,E)

nor (A,E)!
nor (F,B)!

In>

~ 10

MCST=2+3+5+10
= 20

MCSTs are not unigue

easiest way to check for
cycles in tree:

don't add an edge if both
of Its end points are already
N the tree

