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Graph Traversal
• Visiting nodes in a graph (graph traversal) 

• trickier than tree because cycles -> infinite loop 

• Traversing a graph similar to finding a spanning 
tree 

• add flag to each vertex to show if it has been 
visited yet



Depth First Search (DFS)
• mark all vertices as not visited 

• for all vertices in graph, if vertex v has not been visited then use 
recursive function DFS( v ) 

• DFS( v ) 

• Mark vertex v as visited 

• for all vertices connected to v 

• if v has not been visited 

• DFS( x )
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1) mark all vertices as 0,  
i choose vertex A

2) DFS( A ) - mark as 1, 
choose from {F, E, C}
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3) F not visited - DFS( F )- mark as 1 
no unvisited connections - return

4) back at A 
choose from {E, C}
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5) DFS( E ) - mark as 1, 
choose from {B, C}

6) DFS( B ) - mark as 1, 
choose C
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7) DFS( C )- mark as 1  
return

8) back at B 
- all visited - return
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9) back at E  
- all visited - return

10) back at A 
- all visited - return  

recursion done
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1 traversal sequence: 
A,F,E,B,C



Breadth First Search (BFS)
• mark all vertices as not visited

• create an empty queue Q of vertices 

• for all vertices in graph, if vertex v has not been visited then use iterative function 
BFS( v ) // "hello! i am not recursive" 

• BFS( v ) 

• Mark vertex v as visited 

• add v to Q

• while Q is not empty 

• remove front vertex, x, from Q 

• for all vertices, i, adjacent to x, 

• if vertex i has not been visited then mark as visited and add it to Q



Queue (ADT)

• join()  leave()  front()  is_empty() 

• queue is first-in first-out (FIFO) data type 

• (stack is LIFO) 

• NB queue analogy  is people joining a line. stack is a mechanical dish stacker 
(like in a buffet) push() pop() etc. 

• using 'circular' array would be okay - keep wrap-around start and end indices - tricky 

• a linked list might be easier to manage

E

S T L E C T

Uleave join
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X                Q 
                      -            starts empty 
                      A           visit A, add to Q 
A                    -            leave Q 
A                  F,E,C       visit adjacents, add to Q 
F                    E,C        leave Q 
F                    E, C       no unvisited adjacent  
E                    C           leave Q 
E                   C,B        visit adjacent, add to Q 
C                    B           leave Q 
                                           all nodes visited - halt  
(if vertices in graph still unvisited - repeat for each)      
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traversal 
sequence: 
A, F, E, C, B



BFS Recap

• BFS is very commonly used to solve lots of problems 

• web-crawling / Internet / Wikipedia 

• social network - contacts: “people you may know” 

• BFS works on directed and undirected graphs 

• Requires a queue 

• Is not recursive
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let’s start at A
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• mark ‘A’ visited 
• enqueue ‘A’
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sequence visited
• queue is not empty so: 

• dequeue ‘A’ 
• ‘A’ is current vertex 
• unvisited neighbours  

(the frontier) is in grey 
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• mark each of these 

visited 
• and add each to queue A F E C

F E C
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• queue is not empty so: 

• dequeue ‘F’ 
• ‘F’ is current vertex 
• no unvisited neighbours

A F E C

F E C
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• queue is not empty so: 

• dequeue ‘E’ 
• ‘E’ is current vertex 
• unvisited neighbour  

in grey

A F E C

E C
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• mark ‘B’ visited 
• enqueue B
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• queue is not empty so: 

• dequeue ‘C’ 
• ‘C’ is current vertex 
• no unvisited vertices
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front end

sequence visited
• queue is not empty so: 

• dequeue ‘B’ 
• ‘B’ is current vertex 
• no unvisited vertices 

• queue is empty 
• halt
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BFS vs DFS
• easiest to compare difference on a tree 

• Anton: draw helpful diagram here to compare them 

• visit sequence differs 

• are you more likely to find your results earlier in a BFS or DFS 
sequence? 

• implementation may affect sequence - e.g. order that all adjacent 
nodes are visited in BFS 

• recursive function might need rewrite for large graphs 

• Q. why?
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Depth-First Search 

[branch] recursion

Breadth-First Search 

frontiers first 
requires queue
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Spanning Trees
• A spanning tree of graph G consists of 

• is a sub-graph - simplifies the graph for traversal 

• all vertices in G 

• only some of the edges 

• should be representable as a tree 

• Edges are chosen so that new graph is still connected but is acyclic

• A graph can contain many spanning trees 

• Q. can a graph that is not connected contain a ST?
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If graph G is

T2 is a spanning tree:

T1 is a spanning tree:
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= 8 + 12 + 10 + 20 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Minimum Cost Spanning 
Tree (MCST)

• A spanning tree with the lowest length is a MCST 

• Different algorithms for finding a MCST 

• Kruskal's Algorithm 

• Prim's Algorithm 

• Boruvka's Algorithm 

• mixtures



Kruskal's Algorithm
• Joseph Kruskal, 1956 

• This is one method for finding the MCST 

• Greedy algorithm paradigm (short-sighted best choices) 

• solve in stages - make optimal local choice for each stage 

• hope this results close to a global optimum 

• Start with empty spanning tree 

• Add next lowest weighted edge to spanning tree, as long as no cycles are 
formed 

• Repeat previous step until all edges have been considered
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If graph G is
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cycle detected! 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If graph G is
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MCST = 2 + 3 + 5 + 10  
           = 20 

MCSTs are not unique  
 
easiest way to check for  
cycles in tree: 

don't add an edge if both 
of its end points are already  
in the tree


