
Graph Theory: Search
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Graph Traversal
• Visiting nodes in a graph (graph traversal)

• trickier than tree because cycles -> infinite loop

• Traversing a graph similar to finding a spanning
tree

• add flag to each vertex to show if it has been
visited yet

Depth First Search (DFS)
• mark all vertices as not visited

• for all vertices in graph, if vertex v has not been visited then use
recursive function DFS(v)

• DFS(v)

• Mark vertex v as visited

• for all vertices connected to v

• if v has not been visited

• DFS(x)

A B

C
E

F

0 0

0

0

0

1) mark all vertices as 0,  
i choose vertex A

2) DFS(A) - mark as 1, 
choose from {F, E, C}

A B

C
E

F

1 0

0

0

0

A B

C
E

F

1 0

0

0

1

3) F not visited - DFS(F)- mark as 1 
no unvisited connections - return

4) back at A 
choose from {E, C}

A B

C
E

F

1 0

0

0

1

A B

C
E

F

1 0

0

1

1

5) DFS(E) - mark as 1, 
choose from {B, C}

6) DFS(B) - mark as 1, 
choose C

A B

C
E

F

1 1

0

1

1

A B

C
E

F

1 1

1

1

1

7) DFS(C)- mark as 1  
return

8) back at B 
- all visited - return

A B

C
E

F

1 1

1

1

1

A B

C
E

F

1 1

1

1

1

9) back at E  
- all visited - return

10) back at A 
- all visited - return  

recursion done

A B

C
E

F

1 1

1

1

1 traversal sequence: 
A,F,E,B,C

Breadth First Search (BFS)
• mark all vertices as not visited

• create an empty queue Q of vertices

• for all vertices in graph, if vertex v has not been visited then use iterative function
BFS(v) // "hello! i am not recursive"

• BFS(v)

• Mark vertex v as visited

• add v to Q

• while Q is not empty

• remove front vertex, x, from Q

• for all vertices, i, adjacent to x,

• if vertex i has not been visited then mark as visited and add it to Q

Queue (ADT)

• join() leave() front() is_empty()

• queue is first-in first-out (FIFO) data type

• (stack is LIFO)

• NB queue analogy is people joining a line. stack is a mechanical dish stacker
(like in a buffet) push() pop() etc.

• using 'circular' array would be okay - keep wrap-around start and end indices - tricky

• a linked list might be easier to manage

E

S T L E C T

Uleave join

A B

C
E

F

1 0

0

0

0

X Q
 - starts empty 
 A visit A, add to Q 
A - leave Q
A F,E,C visit adjacents, add to Q
F E,C leave Q 
F E, C no unvisited adjacent  
E C leave Q 
E C,B visit adjacent, add to Q 
C B leave Q 
 all nodes visited - halt  
(if vertices in graph still unvisited - repeat for each)

A B

C
E

F

1 0

1

1

1

A B

C
E

F

1 0

1

1

1

A B

C
E

F

1 1

1

1

1

traversal 
sequence: 
A, F, E, C, B

BFS Recap

• BFS is very commonly used to solve lots of problems

• web-crawling / Internet / Wikipedia

• social network - contacts: “people you may know”

• BFS works on directed and undirected graphs

• Requires a queue

• Is not recursive

A B

C

E

F

0 0

0

0

0

queue

front end

sequence visited
let’s start at A

A B

C

E

F

1 0

0

0

0

queue

front end

sequence visited
• mark ‘A’ visited
• enqueue ‘A’

A

A

A B

C

E

F

1 0

0

0

0

queue

front end

sequence visited
• queue is not empty so:

• dequeue ‘A’
• ‘A’ is current vertex
• unvisited neighbours  

(the frontier) is in grey

A

A

A B

C

E

F

1 0

1

1

1

queue

front end

sequence visited
• mark each of these

visited
• and add each to queue A F E C

F E C

A B

C

E

F

1 0

1

1

1

queue

front end

sequence visited
• queue is not empty so:

• dequeue ‘F’
• ‘F’ is current vertex
• no unvisited neighbours

A F E C

F E C

A B

C

E

F

1 0

1

1

1

queue

front end

sequence visited
• queue is not empty so:

• dequeue ‘E’
• ‘E’ is current vertex
• unvisited neighbour  

in grey

A F E C

E C

A B

C

E

F

1 1

1

1

1

queue

front end

sequence visited
• mark ‘B’ visited
• enqueue B

A F E C B

C B

A B

C

E

F

1 1

1

1

1

queue

front end

sequence visited
• queue is not empty so:

• dequeue ‘C’
• ‘C’ is current vertex
• no unvisited vertices

A F E C B

C B

A B

C

E

F

1 1

1

1

1

queue

front end

sequence visited
• queue is not empty so:

• dequeue ‘B’
• ‘B’ is current vertex
• no unvisited vertices

• queue is empty
• halt

A F E C B

B

BFS vs DFS
• easiest to compare difference on a tree

• Anton: draw helpful diagram here to compare them

• visit sequence differs

• are you more likely to find your results earlier in a BFS or DFS
sequence?

• implementation may affect sequence - e.g. order that all adjacent
nodes are visited in BFS

• recursive function might need rewrite for large graphs

• Q. why?

A

B C

D E F G

1

2

3 4

5

6 7

1

2 3

Depth-First Search

[branch] recursion

Breadth-First Search

frontiers first
requires queue

4 5 6 7

A B D E C F G A B C D E F G

Spanning Trees
• A spanning tree of graph G consists of

• is a sub-graph - simplifies the graph for traversal

• all vertices in G

• only some of the edges

• should be representable as a tree

• Edges are chosen so that new graph is still connected but is acyclic

• A graph can contain many spanning trees

• Q. can a graph that is not connected contain a ST?

Spanning Trees
A B

C

E

F

2

10

203

5

56

12

14

8

If graph G is

T2 is a spanning tree:

T1 is a spanning tree:

A B

C

E

F

10

20

128

A B

C

E

F

2

10

203

total cost of T1 
= 8 + 12 + 10 + 20 
= 50

cost of T2
= 35

Minimum Cost Spanning
Tree (MCST)

• A spanning tree with the lowest length is a MCST

• Different algorithms for finding a MCST

• Kruskal's Algorithm

• Prim's Algorithm

• Boruvka's Algorithm

• mixtures

Kruskal's Algorithm
• Joseph Kruskal, 1956

• This is one method for finding the MCST

• Greedy algorithm paradigm (short-sighted best choices)

• solve in stages - make optimal local choice for each stage

• hope this results close to a global optimum

• Start with empty spanning tree

• Add next lowest weighted edge to spanning tree, as long as no cycles are
formed

• Repeat previous step until all edges have been considered

A B

C

E

F

2

10

203

5

56

12

14

8

If graph G is

A B2a)

A B2b)

E
F

3

A B2c)

E
F

3

5

could also have  
chosen (B,E)

A B2d)

E
F

3

5

choose next 
lowest weight 

 
cycle detected! 

can not add (B,E) 
 

nor (A,E)! 
nor (F,B)!

5
6

8

A B

C

E

F

2

10

203

5

56

12

14

8

If graph G is

A B2e)

E

F
3

5

C

10

MCST = 2 + 3 + 5 + 10  
 = 20

MCSTs are not unique  
 
easiest way to check for  
cycles in tree:

don't add an edge if both 
of its end points are already  
in the tree

